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The Asymmetric Contact Process on a 
Finite Set 

R i n a l d o  S c h i n a z i  ~ 

Received June 2, 1993 

The contact process on Z has one phase transition; let 2,. be the critical value 
at which the transition occurs. Let a,~, be the extinction time of the contact 
process on {0,..., N}. Durrett and Liu (1988), Durrett and Schonmann (1988), 
and Durrett, Schonmann, and Tanaka (1989) have respectively proved that 
the subcritical, supercritical, and critical phases can be characterized using 
a large finite system (instead of Z) in the following way. There are constants 
),~(2) and ) , 2 ( ) . )  such that if 2<2 , ,  l im,w~a~v/logN=l/) ' t(2); if ).>).,., 
lim,v, ~ log ax /N= ),_,(2); if 2 = 2,, lim,v_ ~ r ~-~ and limu_ : ,  O N / N  4 = 0 
in probability. In this paper we consider the asymmetric contact process on Z 
when it has two distinct critical values 2c~ < 2,. 2. The arguments of Durren and 
Liu and of Durren and Schonmann hold for 2 < 2,.t and 2 > 2,2. We show that 
for 2E [2,q, ).,.,), limx_ ~. trx/N=--l/ct ,  (where =i is an edge speed) and for 
2 = ).,-2, lim,v_ ~, log a,v/Iog N = 2 in probability. 
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1. INTRODUCTION 

T h e  a s y m m e t r i c  c o n t a c t  p r oce s s  is a M a r k o v  p roces s  w h o s e  s t a t e  a t  t ime  

t is d e n o t e d  by  ~, a n d  w h i c h  evo lves  a c c o r d i n g  to  the  fo l lowing  rules.  If  

t he re  is a pa r t i c l e  a t  .x'e Z ,  t h e n  th is  pa r t i c l e  gives b i r t h  to  a new pa r t i c l e  

at  x + 1 a t  r a t e  2r a n d  a t  x -  1 a t  r a t e  2t, respect ively .  If  a b i r t h  o c c u r s  at  

a n  a l r e a d y  o c c u p i e d  site, t h e n  the  b i r t h  is supp re s sed ,  so t h a t  a t  all t imes  

t he re  is a t  m o s t  o n e  pa r t i c l e  pe r  site. F ina l ly ,  a pa r t i c le  dies at  r a t e  one.  F o r  

2r = 2t, th is  is the  bas ic  c o n t a c t  process ,  wh ich  has  ex tens ive ly  b e e n  s tud ied  
(see, for  i n s t ance ,  Durret t l31) .  
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Schonmann t~3~ studied the asymmetr ic  contact  process on Z. We 
will now introduce his notat ion and describe some of his results. Let 
2=(2r+2t)/2 and for 0 e  [0, ~/2] let 

cos 0 sin 0 
c(O)=2sinO+cos 0 and s(0) = 2 . sm 0 + cos 0 

We write (2t, 2,) as 

2r = 2C(0), 2 / =  2S(0) 

Let 3 ~ be the asymmetr ic  contact  process whose initial state has only one 
particle located at the origin; we write r 1 7 6  1 if there is a particle at x 
at time t, otherwise ~ ~  0. The first critical line is defined by 

and the second critical line is defined by 

2,.,_(0) = sup{),: lim sup P ( r 1 7 6  1) = 0 }  

In words, the first critical value corresponds to the global survival of the 
process and the second critical value corresponds to the local survival. 
Note  that  2,.1(0) ~< 2,.2(0). For  the basic contact  process (0 = ~/4) it is known 
that the two critical values coincide: 2,q(n/4)=2,.2(rc/4). Schonmann 113~ 
has shown that at least for some 0~ (0 ,  re/2), 2,q(0)<2,.2(0); he has also 
conjectured that for any 0 ~r t /4  the same strict inequality should hold. 
Note  that this conjecture has been proved for branching random walks/~2~ 

In this paper  we are interested in the problem of capturing the 
different phases of the asymmetr ic  contact  process when 2,.j(0) :/: 2,.2(0) by 
looking at the evolution of this process on a large finite set (instead of Z). 
More  precisely, we denote by qN the asymmetr ic  contact  process on 
{0, 1 ..... N} and the evolution is the same as for 4, except that births on - 1 
and N + 1 are suppressed. The initial state of q,u consists of one particle on 
each site of {0, 1 ..... N}. Let 

{ N } 
t rN=in f  t>O:  ~ q ~ ( x ) = O  

x = O  

be the extinction time of the process. Since r/, u is a finite Markov  process 
with an absorbing state, aN is finite almost  surely for any value of 2. Even 
so it is possible to characterize the different phases Of the system in the 
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following sense. Durret t  and Liu ~s~ have proved for the basic contact  that 
for any 2 < 2,.1(n/4)= 2,._,(n/4) there is a constant  y , (2 )6 (0 ,  or) such that 

lim au  1 in probabil i ty (1.1) 
N~ 0"2 log N 7~(2) 

On the other hand, Durret t  and Schonmann t6~ have proved for the basic 
contact  process that for any 2>2, .~(~/4)=2, .2(~/4)  there is a constant  
),_,(2) 6 (0, ~ ) such that 

lim log 0"N 2(2) in probabil i ty (1.2) 
u - ~  N 

Firially, Durret t  et al. ~7~ have proved for the basic contact process at the 
critical value 2 = 2,.1(n/4) = 2,.z(rc/4) 

lim aN aN N ~ ~. N - =  ~ and N ~ .~. ~-~ = 0 1 i m  in probabil i ty (1.3) 

It is not difficult to see that  the proofs of Durret t  and Liu 15~ and 
Durret t  and Schonmann t6~ can be adapted  to the asymmetr ic  contact  
process to prove that (1.1) holds for all 2 < 2,.,(0) and that (1.2) holds for 
all 2>2,.2(0),  for all 06  [0, n/2].  The question that we address in this 
paper  is: what is the order of magni tude of au  when 2,.~(0)~2,._,(0) and 
26 [2,,(0),2,.2(0)]. In order to give a precise answer to this question, 
we need to introduce the following edge processes. Let C z__ and C z_. be 
asymmetr ic  contact  processes with starting configurations consisting of one 
particle at each negative integer and of one particle at each positive integer, 
respectively. Let the r ightmost particle and the leftmost particle at time t be 
respectively defined by 

r , = s u p { x 6 Z : r  l , = i n f { x 6 Z : ~ Z + ( x ) = l }  

As a consequence of the subadditive ergodic theorem (see Liggett, ~~ 
Theorem 2.6, Chapter  6) there exist ~, and ~2 such that ~t31 

lira r 2 = a , ( 2  r, 2 / )6  [ - o o ,  oo) almost  surely (1.4) 
t ~  t 

and 

lim -=l'  --~2(~.r, 2 t ) 6 ( - - o o  , oo] almost  surely (1.5) 
t~zt2_ t 
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Moreover,  Schonmann"3~ has proved the following characterizat ion of the 
first critical line (see Theorem 6): 

2, .1(0  ) = sup{A: ~1(2~, 2/) + o%(2.2/ )  ~< 0} (1.6) 

and it is easy to see using Theorem 7 in Schonmann ~13~ that the following 
characterization of the second critical line holds: 

2,.2(0) = sup{A: min(cq(2,,  2/), ~22r, 2/)) ~ 0} (1.7) 

Schonmann (ref. 13, Theorem 10 and Corol lary 4) has also proved that  

0~l(2r, 2/) + ~2(2r, 2/) = 0 

if and only if 2 = 2,.,(0), and 

min(~,(2, ,  21), a2(2,, 2 / ) ) = 0  

if and only if 2 = 2,._,(0). Therefore, for 2 e [2c,(0), 2,.,_(0)) we must have 

0~l(2r, 2/) ~2(~.r, 2/) < 0 

We are now ready to state our results. 

Theo rem 1. For  2 e [2,.,(0), 2,._,(0)) we have c~,(2,, 2/) 0~2(2r, 2/) < 0. 
If Cq(2,, 2 / ) < 0  ( i =  1 or 2), then 

lim aN 1 in probabil i ty 
N ~ ~- N ~i(2r, 2/) 

We conjecture that  the result in Theorem 1 holds in more  general 
situations in the sense that when there are two phase transitions then aN 
has an order of magni tude equal to the "radius" of the finite set. For  
instance, we believe that an asymmetr ic  contact  process on a finite set with 
N sites in Z a has an extinction time with an order of magni tude equal to 
N TM between the two phase transitions. For  a symmetr ic  contact  process 
on a homogeneous  tree with N sites we believe that the extinction time is 
of order log N between the two phase transitions/~'~ 

Now we turn to the behavior  of aN at the second critical value. 

T h e o r e m  2. Assume that 2,.t(0)~2,.2(0); then at 2=2, .2(0)  we 
have for any e > 0 and any sequence KN going to infinity with N 

lim aN = 0 and lim aN N ~ :,=, K N N  2 N . . . .  NZ(log N ) -  1 r,-- ~ in probabil i ty 
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In particular, 

lim log a u =  2 in probability 
u ~  l o g N  

We conjecture that a u / N  2 converges in distribution but not in prob- 
ability. Compar ing  (1.3) and Theorem 2, we see that we get in the critical 
asymmetric cases results which are much more precise than in the critical 
symmetric case. The asymmetric case is easier to deal with because at 
2 = 2,.1(0) the edge speeds are not zero and at 2 = 2,.2(0) one edge speed is 
zero but the fluctuations of the edge are Brownian, ~8'9~ while at 2 = 2,.(~/4) 
the fluctuations are not known (but are believed to be non-Brownian)  and 
the edge speeds are zero. 

At 2=2, .2(0) we have min(~,(2r ,2t) ,~2(2, ,21))=O and 0Cl(2~,2t)+ 
~,(2r, 2~)>0. To fix the notation, assume that ~j(2r, 2 t )=0 .  One of the 
keys in our proof  of Theorem 2 is the following consequence of a represen- 
tation theorem for the edge due to KuczekJ 9J 

Theorem 3. At 2=2,.2(0)~2,.~(0), if l i m , _ ~ r , / t = ~ l ( 2 ~ , 2 t ) = O ,  
then 

/ ' t  
lim t~/2(iog t )~ /2+,=0  almost surely 

for all ~ > O. 

2. C O N S T R U C T I O N  A N D  PROOF OF T H E O R E M  1 

We begin by recalling the graphical construction of the asymmetric 
contact  process (for more details, see Durret(2~). We associate each site 
x E Z with three independent Poisson processes: { T;'~'" 1: n/> 1 } has rate 
2t, { T;~'" + ': n/> 1 } has rate 2 ,  and { T;'~: n/> 1 } has rate 1. We make these 
Poisson processes independent from site to site. For  each x s Z and n/> 1 
we write a 6 mark at the point (x, T;~) while we draw arrows from 
(x, T;~'-" + J) to (x + l, T;~''+ l) and form (x, T,, ....... R ) to ( x -  1, T,, ......... '). We 
say that there is a path from (x, s) to (y, t) if there is a sequence of times 
So = s < s, < s2 < �9 �9 �9 < s,  + ~ = t and spatial locations Xo = x, x] ..... x,, = y so 
that for i =  1, 2,..., n there is an arrow from xi_ t to xi at time si and the 
vertical segments {xi} x (s~, si+ 1) for i = 0  ..... n do not contain any 6. We 
denote the event "there is a path from (x, s) to (y, t)" by {(x, s) ~ (y, t)}. 
To construct the contact  process if the set of occupied sites at the initial 
time is A, we let r 1 if there is a path from (y, 0) to (x, t) for some 
y E A .  
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We use this construction for the asymmetric contact process on a finite 
set as well, but we suppress the arrows which have an endpoint outside of 
the finite set. 

Proof of Theorem 1. We will simplify the notat ion and write ct i 
instead of O~i(2r, 21) whenever no confusion is possible. To fix the notation, 
we will prove Theorem 1 assuming that ~ < 0  and ~tz>0 so that the 
leftmost and rightmost particles drift to the left. We will also denote by 
C, ),, c~, c_, .... constants in (0, oo). 

Fix e > 0; we have that 

where r, u is the rightmost particle of r/u. But we can couple q u and r in 
such a way that conditioned on the survival of r/, u we have (see Liggett, tj~ 
Theorem 2.2, Chapter  6) 

r, 'v = r, + N (2.2 

From (2.1) and (2.2) we get 

P(aN>(- -~+E)  N)<.P(r,_,/,,+,:,N> --N) (2.3 

But since r,/t converges to ~ as t goes to infinity, the RHS of (2.3 
converges to 0 as N goes to infinity. 

We now turn to the other bound. We adapt the ideas of Durrett  
eta/.  ~7~ [see (3.1) there] to our case. Let r', be the right edge of the asym- 
metric contact process on Z, starting with one particle on each site of 
( - ~ ,  N - l o g  N). Recall that ~1 < 0 and consider the following event: 

G =  {r ' ,e(--Nctl~/2,  N) for all t e  E0, ( - 1 / c t , - ~ ) N ] }  

L e m m a  1. l imu~ ~_ P(G)= 1. 

Proof of Lemma 1. By translation invariance 

P(3t ~ I-0, ( - l/c~l - ~) N ] :  r', >1 N) = P(3t ~ [0, ( - l/ctj - ~) N ] :  r, ~> log N)  

(2.4) 

The RHS of (2.4) is less than 

P(3t~[O, clogN]:r,>~logN)+P(3t>clogN:r,>O) (2.5) 
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Since r, is dominated by a Poisson process with rate 2 ,  we can pick c 
small enough so that the first term in (2.5) goes to zero as N goes to 
infinity. The second term in (2.5) also converges to zero since r,/t goes to 
ct~ < 0 almost surely as t goes to infinity. 

We now consider 

P(3t ~ [0, ( - -  1 / 0 (  1 - e )  N]:  r', <~ --Nctle/2 ) 

= P ( 3 t ~ [ O , ( - 1 / ~ t - e )  N ] : r , < < , - N ~ t e / 2 - N + l o g N )  (2.6) 

(2.6) is less than 

P(3 t < c l N: r, <~ --N~x 1 ~/2 - N + log N ) 

+ P ( 3 t ~ [ c l N , ( - 1 / ~ - - ~ ) N ] : r , ~  - N ~ / 2 - N + I o g N )  (2.7) 

Again taking c~ small enough and comparing r, with a Poisson 
process shows that the first term in (2.7) goes to 0 as N goes to infinity. 
Note that if t ~ < ( - 1 / c ~ - e ) N  and if c2 is in (0, c~t~/2/(l/c~ 1 +~)),  then 
(st - c2) t ~> -Nc~t E/2 - N + log N and therefore the second term in (2.7) is 
less than 

P(3t > clN: r,<~ (ctt --c2} t) 

and this term goes to zero as N goes to infinity. This completes the proof  
of Lemma 1. �9 

To show that l imu~ ~. P(G)= 1 implies that limN_ ~_ P(a,v> 
N ( - 1 / ~ - e ) ) = l ,  we need the following properties of the asymmetric 
contact  process. The dual of the asymmetric contact process r is 
~.,.~.,(t) in the sense that if A and B are subsets of Z, then 

P(r V x E B ) = P ( ~ . ; . r ( t ) ( x ) = O ,  V x 6 A  ) (2.8) 

We will also need that the edge 

r;.,.;~,(t) has the same distribution as -l;+;.,(t) (2.9) 

We have that 

p ( a N < N ( - I / ~ j - e ) ) < ~ P ( G ' ) + P ( G ; e N < N ( - I / ~ I - e ) )  (2.10) 

On G there is a path from ( - o o ,  N - l o g N ) x  {0} to [ -Nc~e /2 ,  ~ )  
x { N ( - 1 / ~  l - e ) }  which does not touch the line {N} x [0, N(-1 /c~ j -e , ) ] .  

This path exists for the contact process restricted to {0, 1 ..... N} if it 
does not touch the line {0}x[-0,  N ( - 1 / c ~ j - e ) ] .  By (2.8) observe that 
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the probability of having a path touch {0} x [0, N ( -  1/~ 1 - e ) ]  and end up 
in ( -Nafe/2 ,  ~ )  is the same as the probability of a path in the dual 
from (-Ncqe/2, ~ ) x  {0} to {0} x [0, N(-1 /o t , -e ) ] .  Using (2.9), we see 
that such a path in the dual has the same probability as the event 
{3te [0, N ( - 1 / ~ t - e ) ] :  r , >  -Net,t~2}. So the RHS of (2.10)is less than 

P(G')+ P(G)P(3t6[O,N(--1 /oq-e)]:r ,> - N ~ e / 2 )  (2.11) 

By an argument similar to the one used to pr.ove Lemma 1, the second 
term in the RHS of (2.11) goes to zero as N goes to infinity. Using 
Lemma 1 for the first term in the RHS of (2.11), we get 

lim P(a^,> N(-1/o~ t -e ) )=  1 
N ~ : x :  

This completes the proof of Theorem 1. �9 

3. PROOF OF T H E O R E M  3 

Kuczek w~ has proved that there is a renewal process N(t) with 
interrenewal times r;, i =  1, 2 ..... and for which the last renewal time before 
time t is denoted by SN~,~ = zN=~'~ r; such that the edge at time SNI,~ can be 
represented by 

N(t) 

I's.v.,.= ~ Xi (3.1) 
i = 1  

where the random vectors (X;, r;), i =  1, 2 ..... are independent, identically 
distributed with all moments. The proof of Kuczek is written in discrete 
time for the supercritical symmetric contact process, but can be adapted 
with no difficulties to the asymmetric contact process with ), > 2, ~(0). 

We have 
r, = rs,.,, ' + r , -  rs,.,, (3.2) 

It is easy to see that ~t~ = 0  implies that E(X~)=0. Now, a classical law of 
large numbers (see, for instance, Theorem 8.2, Chapter 1 in ref. 4) implies 
that since the X; are i.i.d, with finite variance, 

1 n 

,,lim n~/2(log n)t/2+,: Z X ; = 0  almost surely (3.3) 
- i =  I 

Since lim,_ ~_ N(t)/t= I/E(rl)  almost surely, (3.1) and (3.3)imply that 

I'S,v[i) 
lira tJ/2(log t)l/2+ ~ - 0  almost surely (3.4) 
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So in order to prove Theorem 3, we need to control  the other terms in the 
RHS of (3.2) using the following lemma. 

L e m m a  2. For  a l l b > 0 ,  

lim t -  SNI,I = 0 almost  surely 
t - -  ~_ I / '  

Proof  of  Lemma 2. This proof  uses the method indicated in ref. 4 
(Exercise 4.13, p. 107) with higher moments.  Fix a > 0 ,  

P(t--SN,~>ath)<~P(rNl,~+l>atb)<<.e( max { r i } > a t  b) (3.5) 
1 <~i<~ N i t ) +  1 

The RHS of (3.5) is less than 

P(N(t)  > t k) + tkP(~, > at b) (3.6) 

where k > 1 is a constant.  We have 

Var (Z /=  l 3,) 
P ( N ( t ) >  tk)<~ ri (3.7) p Y < '  2 

i = l  

where the last inequality is Chebyshev's  inequality. F rom (3.7) we see that 

C 
P(N(t )  > t k ) <~ t-- s (3.8) 

for a constant  c > 0. 
We now turn to the second term in (3.6). Using that E(r~) < ~ for all 

p > 0, we have that 

sup tPP(zl > t) <~ E(r ~') < ~ (3.9) 
t 

(3.9) implies that 

tkP(zl > at b) <~ E(z~) a rtk hp (3.10) 

We pick p large enough in order to have k - b p <  - 1 .  Using (3.10) and 
(3.8), we see that there are constants c~ > 0  and kj > 1 such that 

P(t - SN~,~ > at h) <~ ~.~ (3.1 1 ) 

A Borel-Cantell i  a rgument  completes the proof  of Lemma 2. �9 
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We are now ready to prove Theorem 3. Consider 

P(lr, -rs.,..~l > at h) 

<~ P(t - SN(I)> t h/z) + P ( l r , -  rs,~,,I > at h, t - SN(,) < t hI2) (3,12) 

But r, is dominated by a Poisson process with rate 2r; therefore if we 
denote a random variable which has a Poisson distribution with mean c by 
.~(c), the second term in the RHS of (3.12) is less than 

P(.~(2rt m2) > at h) <<. e x p ( - c 2 t  m2) (3.13) 

where c2 > 0 is a constant and the inequality is an exponential Chebyshev 
inequality. We also use (3.11) to bound the first term on the RHS of (3.12) 
to get 

P ( I r , -  r s,~,,,I > at h) <~ c--L 
l k l  

for a constant c 3. A Borel-Cantelli argument shows that 

II" t - -  I 'S .v l I j  I 
lim tb - 0  almost surely (3.14) 

(3.4) together with (3.14) prove Theorem 3. �9 

4. P R O O F  OF T H E O R E M  2 

We first prove the lower bound in Theorem 2: 

l i r a  O'N 
- ~ in probability (4.1) 

U ~  7. N2(log N) t -,: 

To do so, we use Theorem 3 together with an argument analogous to the 
one used for Theorem I. Let r I be the right edge of the asymmetric contact 
process on Z, starting with one particle on each site of ( -  c~, 2N/3). Fix 
A > 0 and e > 0; consider the following event: 

G ' =  { r ~ ( N / 3 ,  N)  for all t~[O,  A N Z ( l o g N )  ' ':]} 

Similarly to Lemma 1, we prove that 

lim P ( G I ) =  I (4.2) 
N ~ - z  
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Note that  by translation invariance 

P((G')")=P(3te[O, AN2(IogN)-'-':]:lr,r>N/3) (4.3) 

For  a constant  c small enough, the probabil i ty that Ir,I > N/3 for some 
t < cN goes to zero as N goes to infinity (compare  with a Poisson process). 
So to control  (4.3) we only need to consider 

P((G')')=P(qt~[cN, AN2(logN)-I-~]: rr,I > N/3) (4.4) 

A little computa t ion  shows that if t < A N 2 ( i o g N ) - * - ' ,  then 
N >  t '/2(log t)l/'-+~'/3/A. Therefore (4.4) is less than 

t 1/2(1og t )1/2 + ~./3,~ 
P(3t>cN:r,> - ~  -) (4.5) 

By Theorem 3, (4.5) goes to zero as N goes to infinity. And this completes 
the proof  of (4.2). Using the dual process in an argument  similar to the one 
used after Lemma  1, (4.2) implies that for all A > 0  

lim P(a,v > AN2(log N ) -  ' - ~) = 1 
N ~  

and this implies (4.1). 
We now turn to the upper  bound: assume KN is a sequence going to 

infinity with N; we want to prove that 

lim aN - 0  in probabil i ty (4.6) N~ ~. KNN 2 

Observe that  if we couple the finite and the infinite systems 

P(au>KuN2)<~P( inf r', ~> 0) (4.7) 
O<~t<~KN N2  

where r', is the right edge of the asymmetr ic  contact process on Z, starting 
with one particle on each site of ( - o r ,  N] .  Using translation invariance, 
we get 

P(a,v>KNN'-)<<,P( inf r,>~ - N )  (4.8) 
O <~ t <. K.~,,N 2 

Galves and Presutti Is~ proved that the process 

er,:-2, converges in law, when e--+ 0, to a Brownian mot ion B, 
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In particular, if ~ = ( K N  N 2 )  - I/2, we get 

lira P inf tKN]'l,,>~ ~ = P (  inf B,>~0)=0 (4.9) 
/ v ~  \0~ ,~<1 ( K N N - )  '- (KNN-) "-] o~ ,<, l  

(4.9) together with (4.8) prove (4.6). �9 
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